If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+49q+144=0
a = 1; b = 49; c = +144;
Δ = b2-4ac
Δ = 492-4·1·144
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-5\sqrt{73}}{2*1}=\frac{-49-5\sqrt{73}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+5\sqrt{73}}{2*1}=\frac{-49+5\sqrt{73}}{2} $
| -12=6(x+6)+6x | | q^2+49+144=0 | | 5(3x+6)=-14+29 | | 5x÷2-x÷6=14 | | 1/2x-3/4=2/3x+2 | | -79=-y–6y–16 | | 3(x+4)=4x+12-6 | | F(x)=3(2)^2-3(2)+1 | | 40+3x=180 | | 2/5x+1/6=3/10x+1/3 | | q^2-7q+144=0 | | -8-4(6a-3)=7(a+5) | | 1/3x=1/24=0 | | h÷7.8=2 | | 22=374/x | | x-2=-5+2x+2x | | Y=3x+4x=8 | | 2x^2-7=121 | | q^2-49q+144=0 | | -1/3y+1/14=13/42 | | 10-4x=35+x | | 3y–4y=3 | | 2(2x-1)=5 | | 9m+-14=-13 | | 25-5=2+3(x+3) | | -6(s-4)=60 | | z/11/2=2 | | 3x/4+1/4=5 | | 6=8(w-6)-2w | | 10f=60 | | 5/20x=11/20 | | -8=-2(z+7 |